Unusual Coordination Modes of Arylthiolates in $\mathrm{Mo}\left\{\boldsymbol{\eta}^{5}-\mathrm{SC}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\left\{\boldsymbol{\eta}^{7}-\mathrm{SC}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{SiMe}_{3}\right)_{2}\right\}$

Takashi Komuro, ${ }^{\dagger}$ Tsukasa Matsuo, ${ }^{\ddagger}$ Hiroyuki Kawaguchi, ${ }^{*, \ddagger}$ and Kazuyuki Tatsumi*,†
Research Center for Materials Science, and Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan, and Coordination Chemistry Laboratories, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

Received December 2, 2002 ; E-mail: i45100a@nucc.cc.nagoya-u.ac.jp; hkawa@ims.ac.jp

Although arylthiolate ligands are ubiquitous in transition-metal coordination chemistry, they are invariably S-bonded for either terminal or bridging coordination. This is probably because the affinity of transition-metal elements for thiolate sulfurs is strong relative to the metal-aryl π interactions. In contrast, analogous aryloxide complexes have occasionally been found to assume π coordination geometries at the aryl substituents, in an η^{5}-pentadienyl or an η^{3}-allyl bonding manner, leaving the $\mathrm{C}=\mathrm{O}$ portion intact. ${ }^{1}$ As a part of our ongoing study on activation of small molecules by means of coordinatively unsaturated transition-metal complexes, ${ }^{2}$ we were interested in preparation of molybdenum complexes of the 2,6-disubstituted arylthiolates, $\mathrm{SC}_{6} \mathrm{H}_{3}-2-\mathrm{Ph}-6-\mathrm{SiMe}_{3}$ and $\mathrm{SC}_{6} \mathrm{H}_{3}-$ $2,6-\left(\mathrm{SiMe}_{3}\right)_{2}$. This contribution describes the reactions of $\mathrm{MoCl}_{3}-$ $(\text { thf })_{3}$ with the lithium salts of these arylthiolates, which resulted in isolation of the unexpected π-sandwiched bis-arylthiolato complex, $\left.\mathrm{Mo}\left\{\eta^{5}-\mathrm{SC}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\left\{\eta^{7}-\mathrm{SC}_{6} \mathrm{H}_{3}-2,6 \text {-(} \mathrm{SiMe}_{3}\right)_{2}\right\}(\mathbf{1})$. We also report here that the π-bonding in $\mathbf{1}$ is labile and that the reaction with acetonitrile gave rise to the S-bonded bis-arylthiolato complex carrying three acetonitrile molecules, one of which is coordinated in an η^{2}-mode, $\mathrm{Mo}\left\{\mathrm{SC}_{6} \mathrm{H}_{3} \text { - } 2,6 \text { - }\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\left(\eta^{1}-\mathrm{CH}_{3} \mathrm{CN}\right)_{2^{-}}$ $\left(\eta^{2}-\mathrm{CH}_{3} \mathrm{CN}\right)(\mathbf{2})$.

Treatment of $\mathrm{MoCl}_{3}(\text { (thf })_{3}$ with 3 equiv of $\mathrm{LiSC}_{6} \mathrm{H}_{3}-2-\mathrm{Ph}-6-\mathrm{SiMe}_{3}$ in $\mathrm{Et}_{2} \mathrm{O}$, and subsequent removal of LiCl , afforded the expected tris-arylthiolato complex of $\mathrm{Mo}(\mathrm{III}), \mathrm{Mo}\left(\mathrm{SC}_{6} \mathrm{H}_{3}-2-\mathrm{Ph}-6-\mathrm{SiMe}_{3}\right)_{3}(\mathbf{3})$ (see Scheme 1), as an analytically pure dark-purple crystalline solid in 67% yield. ${ }^{3}$ According to the X-ray analysis, complex 3 has a three-legged piano-stool structure with three arylthiolate sulfurs and a π-bonded phenyl substituent of one arylthiolate ligand. ${ }^{4}$ The coordination geometry at molybdenum(III) is similar to that of Mo$\left(\mathrm{SC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Mes}_{2}\right)_{3},{ }^{4 \mathrm{a}}$ and the geometric parameters are not unusual.

Scheme 1

On the other hand, we isolated reddish-brown crystals from the analogous reaction between $\mathrm{MoCl}_{3}(\mathrm{thf})_{3}$ and 3 equiv of $\mathrm{LiSC}_{6} \mathrm{H}_{3}$ -$2,6-\left(\mathrm{SiMe}_{3}\right)_{2}$. The product was formulated as $\mathrm{Mo}\left\{\mathrm{SC}_{6} \mathrm{H}_{3}-2,6\right.$ $\left.\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}$ (1), based on the elemental analysis, ${ }^{5}$ the EI mass spectrum showing an isotope cluster of the parent ion centered at

[^0]

Figure 1. Molecular structure of $\mathbf{1}$. Selected bond distances $[\AA]$: Mo$\mathrm{S}(1) 2.562(1) ; \mathrm{Mo}-\mathrm{C}(1) 2.111(4) ; \mathrm{Mo}-\mathrm{C}(2) 2.339(4) ; \mathrm{Mo}-\mathrm{C}(3) 2.360(4)$; Mo-C(4) 2.280(4); Mo-C(5) 2.335(4); Мo-C(6) 2.317(4); Mo-C(13) 2.448(4); $\mathrm{Mo}-\mathrm{C}(14) 2.302(4) ; \mathrm{Mo}-\mathrm{C}(15) 2.313(4) ; \mathrm{Mo}-\mathrm{C}(16) 2.327(4)$; $\mathrm{Mo}-\mathrm{C}(17) 2.295(4) ; \mathrm{Mo}-\mathrm{C}(18) 2.369(4) ; \mathrm{S}(1)-\mathrm{C}(1) 1.754(4) ; \mathrm{S}(2)-\mathrm{C}(13)$ 1.709(4).
$m / z 604$, and the IR spectrum indicating the absence of an SH moiety. Obviously reduction from Mo (III) to Mo (II) took place during the reaction, and the yield of $\mathbf{1}$ is relatively low (29%), partly because we were forced to rinse the crude product with HMDSO repeatedly to remove the disulfide, $\left\{\mathrm{SC}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}$.
The X-ray crystal structure analysis confirmed the formulation of $\mathbf{1}$ and revealed its unusual coordination geometry (Figure 1). There are two immediate observations in the structure: (1) the aryl group of each ligand is π-bonded to Mo , and (2) one $\mathrm{C}=\mathrm{S}$ group bends significantly toward Mo while the other is far away from the metal center, and thereby the molecule is unsymmetric. Close inspection of the $\mathrm{C}-\mathrm{C}$ bond distances in either of the arylthiolates suggests that they are classified into two groups: four short $\mathrm{C}-\mathrm{C}$ bonds among $\mathrm{C}(2)-\mathrm{C}(6)($ or $\mathrm{C}(14)-\mathrm{C}(18))(1.382(7)-1.426(6) \AA)$ vs two long $\mathrm{C}(1)-\mathrm{C}(2), \mathrm{C}(1)-\mathrm{C}(6)$, (or $\mathrm{C}(13)-\mathrm{C}(14), \mathrm{C}(13)-$ $\mathrm{C}(18)$) bonds (1.450(6)-1.459(6) $\AA)$. Thus, the aryl rings behave like pentadienyl ligands. This bonding feature would provide 16 electrons at the Mo (II) center, and the additional π-coordination of one $\mathrm{C}=\mathrm{S}$ bond makes the complex an 18 -electron system. The $\eta^{7}-\mathrm{SC}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{SiMe}_{3}\right)_{2}$ ligand is folded by 14.9° at the $\mathrm{C}(2)-\mathrm{C}(6)$ vector due to the coordination of the $\mathrm{C}=\mathrm{S}$ group. Consequently the $\mathrm{C}(1)-\mathrm{S}(1)$ bond is elongated, while the $\mathrm{Mo}-\mathrm{C}(1)$ bond ($2.111(4) \AA$) is substantially shorter than the other $\mathrm{Mo}-\mathrm{C}$ bonds. In the $\eta^{5}-\mathrm{SC}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{SiMe}_{3}\right)_{2}$ ligand, the $\mathrm{C}(13)-\mathrm{S}(2)$ bond length of $1.709(4) \AA$ is between single and double bonds, indicating π-electron delocalization over the five "pentadienyl" carbon atoms and the $\mathrm{C}=\mathrm{S}$ bond. The $\mathrm{C}=\mathrm{S}$ group bends away from the metal center by 10.8°, resulting in the long $\mathrm{Mo}-\mathrm{C}(13)$ distance of $2.449(5)$ Å.

The Mo(II) complex $\mathbf{1}$ is diamagnetic, and the ${ }^{1} \mathrm{H}$ NMR spectrum in benzene- d_{6} shows two sets of proton signals in a 1:1 intensity

Figure 2. Molecular structure of 2. Selected bond distances $[\AA]$ and angles (deg): $\mathrm{Mo}-\mathrm{S}(1) 2.355(3) ; \mathrm{Mo}-\mathrm{S}(2) 2.352(3) ; \mathrm{Mo}-\mathrm{N}(1) 1.98(2) ; \mathrm{Mo}-$ $\mathrm{N}(2) 2.14(1) ; \mathrm{Mo}-\mathrm{N}(3) 2.15(1) ; \mathrm{Mo}-\mathrm{C}(25) 1.98(2) ; \mathrm{S}(1)-\mathrm{C}(1) 1.81(1) ;$ $\mathrm{S}(2)-\mathrm{C}(13) 1.78(1) ; \mathrm{N}(1)-\mathrm{C}(25) 1.24(2) ; \mathrm{N}(2)-\mathrm{C}(27) 1.15(2) ; \mathrm{N}(3)-\mathrm{C}(29)$ 1.16(2); S(1)-Mo-S(2) 128.5(1); $\mathrm{N}(2)-\mathrm{Mo}-\mathrm{N}(3) 162.1(5) ; \mathrm{Mo}-\mathrm{S}(1)-$ $\mathrm{C}(1) 110.2(3) ; \mathrm{Mo}-\mathrm{S}(2)-\mathrm{C}(13) 108.7(4) ; \mathrm{N}(1)-\mathrm{C}(25)-\mathrm{C}(26) 141(1)$.
ratio for both the aromatic and trimethylsilyl groups. The ${ }^{13} \mathrm{C}$ and ${ }^{29} \mathrm{Si}$ NMR spectra also indicate that the two $\mathrm{SC}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{SiMe}_{3}\right)_{2}$ ligands are chemically inequivalent. ${ }^{5}$ The aryl ring proton resonances are all shifted upfield compared with those of $\mathrm{HSC}_{6} \mathrm{H}_{3}-2,6$ $\left(\mathrm{SiMe}_{3}\right)_{2}(7.45(\mathrm{~d})$ and $7.06(\mathrm{t}) \mathrm{ppm})$. A similar trend was noticed in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, except for one resonance at 174.0 ppm , which may be assigned to the uncoordinated thiocalbonyl carbon. ${ }^{6}$ These observations suggest that the unsymmetric π-sandwich structure of $\mathbf{1}$ is preserved and rigid in solution.

Although the unsymmetric π-sandwich structure of $\mathbf{1}$ appears to be rigid at the NMR time scale, lability of the aryl-Mo bond was manifested by its reaction with acetonitrile. Thus, dissolution of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature led to a rapid color change to deep green. A diamagnetic sky-blue crystalline product, formulated as $\mathrm{Mo}\left\{\mathrm{SC}_{6} \mathrm{H}_{3}-2,6 \text { - }\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}$ (2), ${ }^{7}$ was obtained from the $\mathrm{CH}_{3} \mathrm{CN}$ solution in 76% yield. The X-ray derived structure of $\mathbf{2}$ is given in Figure 2, which reveals a trigonal bipyramidal coordination geometry of Mo(II) with two S-bonded arylthiolates and three acetonitrile molecules. Interestingly, one acetonitrile molecule adopts an η^{2}-coordination mode at an equatorial site, while the other two show normal η^{1}-coordination at the axial sites. The π-bonded $\mathrm{CH}_{3} \mathrm{CN}$ orients perpendicular to the equatorial plane, and the $\mathrm{C}(25)-\mathrm{N}(1)$ bond is longer by $0.08 \AA$ than the corresponding bonds of $\eta^{1}-\mathrm{CH}_{3} \mathrm{CN}$. This upright conformation is electronically favored for a d^{4} configuration of Mo (II), and can be rationalized in terms of the optimal π-back-bonding. ${ }^{8 \mathrm{~b}}$ This bonding feature is analogous to the $\mathrm{Mo}(\mathrm{II})$ alkyne complexes, $\mathrm{Mo}\left(\mathrm{S}^{\prime} \mathrm{Bu}\right)_{2}\left(\mathrm{CN}^{\prime} \mathrm{Bu}\right)_{2}\left(\mathrm{RC} \equiv \mathrm{CR}^{\prime}\right)(\mathrm{R}$, $\left.\mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{H}\right) .{ }^{8}$

The IR spectrum of 2 exhibits bands at 2261 and $1673 \mathrm{~cm}^{-1}$, assignable to the $\mathrm{N}-\mathrm{C}$ stretching modes of the η^{1} - and $\eta^{2}-\mathrm{CH}_{3} \mathrm{CN}$ ligands, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum in toluene- d_{8} consists of three $\mathrm{CH}_{3} \mathrm{CN}$ singlets and two sets of the arylthiolate ligands up to $70^{\circ} \mathrm{C},{ }^{7}$ at the temperature of which $\mathbf{2}$ starts to decompose. Thus, the molecule is not fluxional, and its solid-state structure is retained in solution. The $\eta^{2}-\mathrm{CH}_{3} \mathrm{CN}$ nitrile carbon resonance at 226.9 ppm in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shifts downfield considerably, relative to the $\eta^{1}-\mathrm{CH}_{3} \mathrm{CN}$ nitrile carbons, and falls in the region where $\mathrm{CH}_{3} \mathrm{CN}$ has been thought to act as a four-electrondonor ligand. ${ }^{9}$ Thus, the second π orbital ${ }^{10}$ may also participate in the bonding with Mo (II) for 2 .

We have established for the first time that the 2,6-disubstituted arylthiolate ligand $\mathrm{SC}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{SiMe}_{3}\right)_{2}$ can bind to a metal center
at the aryl portion to form a π-sandwich $\mathrm{Mo}(\mathrm{II})$ complex, which would open a new facet of transition-metal thiolate chemistry. Lability of the π-aryl coordination of $\mathbf{1}$ and the presence of η^{1} and $\eta^{2}-\mathrm{CH}_{3} \mathrm{CN}$ ligands in $\mathbf{2}$ suggest that these complexes are useful for exploration of the chemistry of coordinatively unsaturated lowvalent molybdenum complexes. ${ }^{4,8,11}$ Further study of the reactivity of $\mathbf{1}$ and $\mathbf{2}$ is currently underway.

Acknowledgment. This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 14078101, 14078211 "Reaction Control of Dynamic Complexes") from Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Supporting Information Available: Experimental procedures, analytical data, spectroscopic data (PDF), and X-ray crystallographic files (in CIF format) for $\mathbf{1 , 2}$, and $\mathbf{3}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Cámpora, J.; Reyes, M. L.; Mereiter, K. Organometallics 2002, 21, 1014-1016. (b) Le Bras, J.; El Amouri, H.; Vaissermann, J.; Organometallics 1996, 15, 5706-5712. (c) Koelle, U.; Wang, M. H.; Raabe, G. Organometallics 1991, 10, 2573-2577. (d) Loren, S. D.; Campion, B. K.; Heyn, R. H.; Tilley, T. D.; Bursten, B. E.; Luth, K. W. J. Am. Chem. Soc. 1989, 111, 4712-4718. (e) Cetinkaya, B.; Hitchcock, P. B.; Lappert, M. F.; Torroni, S.; Atwood, J. L.; Hunter, W. E.; Zaworotko, M. J. J. Organomet. Chem. 1980, 188, C31-C35. (f) Bennet, M. A.; Matheson, T. W. J. Organomet. Chem. 1979, 175, 87-93. (g) Cole-Hamilton, D. J.; Young, R. J.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1976, 19951976..
(2) Kawaguchi, H.; Matsuo, T. Angew. Chem., Int. Ed. 2002, 41, 2792-2794.
(3) Data for 3: Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{MoS}_{3} \mathrm{Si}_{3}$: C, $62.25 ; \mathrm{H}, 5.92 ; \mathrm{S}, 11.08$. Found: C, 61.90; H, 6.00; S, 10.82. Crystal data: monoclinic $P 2_{1} / n$ (No. 14), $a=12.395(5) \AA, b=17.433(6) \AA, c=20.061(8) \AA, \beta=$ $90.849(5)^{\circ}, V=4334(2) \AA^{3}, Z=4, R 1[I>2 \sigma(I)]=0.055(\mathrm{wR2}$ (all data) $=0.142, \mathrm{GOF}=1.01$ on F^{2}).
(4) (a) Buyuktas, B. S.; Olmstead, M. M.; Power, P. P.Chem. Commun. 1998, 1689-1690. (b) Bishop, P. T.; Dilworth, J. R.; Zubieta, J. J. Chem. Soc. 1985, 257-258. (c) Bishop, P. T.; Dilworth, J. R.; Zubieta, J. J. Chem. Soc., Chem. Commun. 1985, 257-258.
(5) Data for 1: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.73(\mathrm{~d}, 2 \mathrm{H}), 5.19(\mathrm{t}, 1 \mathrm{H}), 5.12(\mathrm{~d}, 2 \mathrm{H})$, $3.09(\mathrm{t}, 1 \mathrm{H}), 0.48\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si} M e_{3}\right), 0.28\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si} M e_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 174.0,125.9,110.1,106.0,104.4,103.2,95.5,93.6,2.9(\mathrm{SiMe})_{3}\right)$, $1.6\left(\mathrm{Si} M e_{3}\right) .{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.9,-0.5$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{MoS}_{2} \mathrm{Si}_{4}$: C, $47.80 ; \mathrm{H}, 7.02$; S, 10.64. Found: C, 47.69 ; H, 7.07 ; S, 10.57. Crystal data: monoclinic, $P 2_{1} / n$ (No. 14), $a=11.960(5) \AA$, $b=19.135(8) \AA, c=13.097(5) \AA, \beta=99.847(5)^{\circ}, V=2953.1(20) \AA^{3}$, $Z=4, R 1[I>2 \sigma(I)]=0.050(\mathrm{w} R 2($ all data $)=0.129, G O F=1.03$ on F^{2}).
(6) (a) Fisher, H.; Flick, K. H.; Troll, C. Chem. Ber. 1992, 125, 2675-2680. (b) Schenk, W. A.; Stur, T.; Dombrowski, E. Inorg. Chem. 1992, 31, 723724.
(7) Data for 2: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.47(\mathrm{dd}, 1 \mathrm{H}), 7.41(\mathrm{dd}, 1 \mathrm{H}), 7.38(\mathrm{dd}$, $1 \mathrm{H}), 7.30(\mathrm{dd}, 1 \mathrm{H}), 6.94(\mathrm{t}, 1 \mathrm{H}), 6.90(\mathrm{t}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$, $0.78(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 9 \mathrm{H}), 0.63(\mathrm{~s}, 9 \mathrm{H}), 0.242(\mathrm{~s}, 9 \mathrm{H}), 0.237(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 226.9\left(\eta^{2}-\mathrm{NCMe}\right), 165.5\left(\eta^{1}-\mathrm{NCMe}\right), 164.9$ (η^{1}-NCMe). ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-3.1,-3.5,-3.7,-4.6$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{MoN}_{3} \mathrm{~S}_{2} \mathrm{Sii}_{4}$: C, 49.62 ; H, 7.08; N, 5.79; S, 8.83. Found: C, $49.26 ; \mathrm{H}, 7.02$; N, 5.67 ; S, 8.35 . Crystal data: monoclinic, $P 2_{1}$ (No. 4), $a=11.496(8) \AA, b=15.287(9) \AA, c=13.237(9) \AA, \beta=114.96(1)^{\circ}$, $V=2108(2) \AA^{3}, Z=2, R 1[I>2 \sigma(I)]=0.059(\mathrm{w} R 2($ all data $)=0.168$, $\mathrm{GOF}=1.01$ on F^{2}).
(8) (a) Kamata, M.; Yoshida, T.; Otsuka, S.; Hirotsu, K.; Higuchi, T.; Kido, M.; Tatsumi, K.; Hoffmann, R. Organometallics 1982, 1, 227-230. (b) Kamata, M.; Hirotsu, K.; Higuchi, T.; Kido, M.; Tatsumi, K.; Yoshida, T.; Otsuka, S. Inorg. Chem. 1983, 22, 2416-2424.
(9) (a) Thomas, S.; Young, C. G.; Tiekink, E. R. T. Organometallics 1998, 17, 182-189. (b) Barrera, J.; Sabat, M.; Harman, W. D. J. Am. Chem. Soc. 1991, 113, 8178-8180.
(10) Tatsumi, K.; Hoffmann, R.; Templeton, J. L. Inorg. Chem., 1982, 21, 466-468.
(11) (a) Chisholm, M. H.; Davidson, R. R.; Huffman, J. C.; Quinlan, K. B. J. Am. Chem. Soc. 2001, 123, 9652-9664. (b) Agapie, T.; Odom, A. L.; Cummins, C. C. Inorg. Chem. 2000, 39, 174-179. (c) Blower, P. J.; Dilworth, J. R.; Zubieta, J. Inorg. Chem. 1985, 24, 2886-2868.
JA029541+

[^0]: \dagger Nagoya University.
 \ddagger Institute for Molecular Science.

